18 de Noviembre de 2019
- Autor: Font Calvo, Juan Luis.
- Titulo: “Network traffic characterisation, analysis, modelling and simulation for networked virtual environments”
- Departamento: Arquitectura y Tecnología de Computadores.
- Teseo: https://www.educacion.gob.es/teseo/mostrarRef.do?ref=1808091
- Directores: Jose Luis Sevillano Ramos.
- Sinopsis:
Networked virtual environment (NVE) refers to a distributed software system where a simulation, also known as virtual world, is shared over a data network between several users that can interact with each other and the simulation in real-time. NVE systems are omnipresent in the present globally interconnected world, from entertainment industry, where they are one of the foundations for many video games, to pervasive games that focus on e-learning, e-training or social studies. From this relevance derives the interest in better understanding the nature and internal dynamics of the network traffic that vertebrates these systems, useful in fields such as network infrastructure optimisation or the study of Quality of Service and Quality of Experience related to NVE-based services. The goal of the present work is to deepen into this understanding of NVE network traffic by helping to build network traffic models that accurately describe it and can be used as foundations for tools to assist in some of the research fields enumerated before.
First contribution of the present work is a formal characterisation for NVE systems, which provides a tool to determine which systems can be considered as NVE. Based on this characterisation it has been possible to identify numerous systems, such as several video games, that qualify as NVE and have an important associated literature focused on network traffic analysis. The next contribution has been the study of this existing literature from a NVE perspective and the proposal of an analysis pipeline, a structured collection of processes and techniques to define microscale network models for NVE traffic. This analysis pipeline has been tested and validated against a study case focused on Open Wonderland (OWL), a framework to build NVE systems of different purpose. The analysis pipeline helped to defined network models from experimental OWL traffic and assessed on their accuracy from a statistical perspective. The last contribution has been the design and implementation of simulation tools based on the above OWL models and the network simulation framework ns-3. The purpose of these simulations was to confirm the validity of the OWL models and the analysis pipeline, as well as providing potential tools to support studies related to NVE network traffic. As a result of this final contribution, it has been proposed to exploit the parallelisation potential of these simulations through High Throughput Computing techniques and tools, aimed to coordinate massively parallel computing workloads over distributed resources.